Таблицы маршрутизации

Динамическая маршрутизация, протокол RIP

Протокол RIP (Routing Information Protocol или Протокол передачи маршрутной информации) является одним из самых распространенных протоколов динамической маршрутизации.

Его суть заключается в том, что маршрутизатор использующий RIP передает во все подключенные к нему сети содержимое своей таблицы маршрутизации и получает от соседних маршрутизаторов их таблицы.

Есть две версии протокола RIP. Версия 1 не поддерживает маски, поэтому между сетями распространяется только информация о сетях и расстояниях до них. При этом для корректной работы RIP на всех интерфейсах всех маршрутизаторов составной сети должна быть задана одна и та же маска.

Протокол RIP полностью поддерживается только серверной операционной системой, тогда как клиентская операционная система (например, Windows XP) поддерживает только прием маршрутной информации от других маршрутизаторов сети, а сама передавать маршрутную информацию не может.

Настраивать RIP можно двумя способами:

  • В графическом режиме с помощью оснастки “Маршрутизация и удаленный доступ”.
  • В режиме командной строки с помощью утилиты netsh.

Рассмотрим настройку в режиме командной строки с помощью утилиты netsh.

Netsh – это утилита командной строки и средство выполнения сценариев для сетевых компонентов операционных систем семейства Windows (начиная с Windows 2000).

Введите в командной строке команду netsh, после появления netsh> введите знак вопроса и нажмите Enter, появиться справка по команде.

Введите последовательно команды:

  1. routing
  2. Ip
  3. rip
  4. ?

Вы увидите, что среди доступных команд этого контекста есть команда add interface, позволяющая настроить RIP на заданном интерфейсе. Простейший вариант этой команды – add interface «Имя интерфейса».

Если ввести в Windows XP в контексте команду , то получим сообщение «RIP должен быть установлен первым». Дело в том, что Установить RIP можно только в серверной операционной системе. В Windows Server 2003 в RIP включается в оснастке «Маршрутизация и удаленный доступ» (Пуск –> Программы –> Администрирование –> Маршрутизация и удаленный доступ). Таким образом, включить RIP в нашем случае можно только на маршрутизаторах Server1 и Server2.

Настроим RIP на Server1. Но сначала нужно выключит брандмауэр.

Теперь в оснастке «Маршрутизация и удаленный доступ» в контекстном меню пункта SERVER1 (локально) выберите пункт «Настроить и включить Маршрутизация ЛВСмаршрутизацию и удаленный доступ».

В появившемся окне мастера нажмите «Далее».

На следующем этапе выберите «Особая конфигурация» и нажмите «Далее».

После чего нужно выбрать «Маршрутизация ЛВС» и завершить работу мастера.

То же самое нужно выполнить на Server2.

Особенности применения команды route CHANGE в Windows

Необходимо отметить пару моментов в поведении команды route, которые является контринтуитивными (мы ждём одного результата, а получаем другой, неожиданный результат).

Маршруты, в том числе маршрут по умолчанию, можно не удалять/добавлять, а изменять с помощью команды route CHANGE. Но помните об особенности этой команды, если у вас установлено два или более маршрута по умолчанию: она удалит ВСЕ маршруты и впишет один новый, который указан с этой командой! На первый взгляд это неочевидно, но если подумать, то становится понятно, почему она действует именно таким образом.

Хотя об этом уже было сказано выше, значение метрики является ОТНОСИТЕЛЬНЫМ! То значение, которое вы устанавливаете для метрики, добавляется к рассчитываемому системой значению. При этом оно постоянно плавает: то есть система регулярно пересчитывает значения метрики, но к каждому полученному числу добавляет то, которое вы указали с командой route ADD.

Как установить метрику для сетевых подключений в Windows

Чтобы было понятно, покажу на конкретном примере. У меня два сетевых интерфейса с IP адресами:

  • 192.168.0.49 (имеет шлюз 192.168.0.1) – используется по умолчанию
  • 192.168.1.43 (имеет шлюз 192.168.1.1) – хочу чтобы он использовался по умолчанию

Для этого удаляю все маршруты по умолчанию:

route DELETE 0.0.0.0

Теперь добавляю тот, который я хочу сделать маршрутом по умолчанию, командой вида:

route ADD 0.0.0.0 MASK 0.0.0.0 ШЛЮЗ

В ней ШЛЮЗ нужно заменить на IP адрес шлюза (роутера) того интерфейса, через который вы хотите выходить в Интернет. Для меня это:

route ADD 0.0.0.0 MASK 0.0.0.0 192.168.1.1

На данном этапе уже вернулось Интернет-подключение и если вам достаточного одного подключения, то можно не продолжать.

Тем не менее, я хочу чтобы в качестве резервного у меня было активно и второе подключение, но чтобы оно по умолчанию не использовалось.

Для его добавления используется команда следующего вида:

route ADD 0.0.0.0 MASK 0.0.0.0 ШЛЮЗ METRIC 100

Обратите внимание, что вместо ШЛЮЗ нужно вписать IP адрес шлюза «резервного» интерфейса. Также значение является не абсолютным, а относительным!!! Помните об этом, что указанная величина ДОБАВЛЯЕТСЯ к тому значению метрики, которое рассчитывает операционная система

Значение 100 можно поменять на другое (например, 50). Но выбирайте его так, чтобы значение в сумме с рассчитанной метрикой было больше, чем метрика подключения, которое мы хотим использовать по умолчанию.

Моя команда:

route ADD 0.0.0.0 MASK 0.0.0.0 192.168.0.1 METRIC 100

Проверяем:

route print

Как видим, в маршрутах по умолчанию по-прежнему доступно два сетевых интерфейса. Но теперь интерфейс 192.168.0.49 имеет очень большое значение метрики, поэтому по умолчанию будет применяться сетевой интерфейс 192.168.1.43.

Проверим IP в браузере https://suip.biz/ru/?act=myip:

Как видим, поменялся и внешний IP (был 109.126.249.183, а стал 213.167.219.207) и локальный (был 192.168.0.49, а стал 192.168.1.43).

В командной строке Windows делаю трассировку:

.\TRACERT.EXE suip.biz

Как можно увидеть по первой строке, я действительно выхожу в интернет через шлюз 192.168.1.1.

Одноадресная маршрутизация. Понятие таблицы маршрутизации. Типы записей в таблице маршрутизации.

Под одноадресной маршрутизацией понимается процесс передачи сообщений между подсетями, в котором сообщение адресовано только одному заданному получателю. Вся задача маршрутизации в этом случае сводится к доставке пакета получателю и выбору оптимального маршрута из множества возможных.

Понятие таблицы маршрутизации

Отправителя и получателя может разделять произвольное количество маршрутизаторов. При этом процесс передачи сообщения от одного маршрутизатора другому называется «прыжком» (hop). Каждый маршрутизатор обладает информацией о структуре сети на расстоянии одного прыжка. Другими словами, маршрутизатор не обладает информацией о точном местоположении требуемого хоста.

В большой сети, да еще и с интенсивно меняющейся структурой (как, например, Интернет), это было бы невозможно. Вместо этого, маршрутизатор обладает информацией о соседних маршрутизаторах и о том, кому из них необходимо передать сообщение для последующей доставки в той или иной ситуации. Эта информация хранится в специальной таблице, которая носит название таблицы маршрутизации (routing table).

Таблицы маршрутизации используются для принятия решения о том, как именно будет доставлено то или иное сообщение. Наличие этих таблиц не является исключительным свойством маршрутизатора. В сети TCP/IP любой хост (даже не являющийся маршрутизатором) может также располагать таблицей маршрутизации, которая используется с целью определения оптимального маршрута передачи сообщений. Так, скажем, если в подсети имеется три маршрутизатора, хост использует таблицу маршрутизации для того, чтобы выбрать из них наиболее оптимальный для доставки сообщения.

Типы записей в таблице маршрутизации

Записи в таблице маршрутизации называются маршрутами. При этом существует три типа маршрутов.

  • Маршрут к хосту, или узловой маршрут (Host Route). Этот тип маршрута определяет путь доставки пакета, адресованного хосту с конкретным сетевым адресом. Маршруты к хостам обычно используются для создания настраиваемых маршрутов к определенным компьютерам, а также для управления или оптимизации сетевого трафика.
  • Маршрут к сети, или сетевой маршрут (Network Route). Данный тип маршрута используется для определения способа доставки пакета в подсеть с определенным адресом. Большую часть содержимого таблицы маршрутизации представляют собой маршруты данного типа.
  • Маршрут по умолчанию (Default Route). Маршрут по умолчанию используется, когда не найдены никакие другие маршруты в таблице маршрутизации. Маршрут по умолчанию используется в ситуации, когда в таблице маршрутизации отсутствует соответствующий маршрут по идентификатору сети или маршрут к хосту по адресу получателя. Маршрут по умолчанию упрощает конфигурацию компьютеров. Вместо конфигурирования компьютера и настройки маршрутов для всех идентификаторов сетей в межсетевой среде используется одиночный маршрут по умолчанию для пересылки всех пакетов в сеть получателя или по адресу в межсетевой среде, который не был найден в таблице маршрутизации.

Принятие решений о переадресации

Давайте взглянем на три маршрута, которые мы только что установили в таблице маршрутизации, и посмотрим, как они выглядят на маршрутизаторе.

Если пакет прибывает на интерфейс маршрутизатора с адресом назначения 192.168.32.1, какой маршрут выберет маршрутизатор? Это зависит от длины префикса или количества бит, установленного в маске подсети. При пересылке пакета более длинные префиксы всегда предпочтительнее коротких.

В этом примере, пакет, отправленный по адресу 192.168.32.1 направляется в сеть 10.1.1.1, так как адрес 192.168.32.1 находится в сети 192.168.32.0/26 (192.168.32.0–192.168.32.63). Адресу соответствуют еще два доступных маршрута, но у 192.168.32.0/26 наиболее длинный префикс в таблице маршрутизации (26 бит против 24 и 19).

Точно так же, если пакет, направленный на адрес 192.168.32.100, прибывает на один из интерфейсов маршрутизатора, он перенаправляется на 10.1.1.2, поскольку 192.168.32.100 не попадает в диапазон адресов 192.168.32.0/26 (от 192.168.32.0 до 192.168.32.63), но попадает в диапазон адресов 192.168.32.0/24 назначения (от 192.168.32.0 до 192.168.32.255). Опять, он также попадает в область, перекрытую 192.168.32.0/19, но 192.168.32.0/24 имеет более длинный префикс.

Ip classless

Для тех адресов, для которых команда ip classless configuration попадает в данный диапазон, возможно возникновение сбоев в процессе маршрутизации и пересылки. В реальности команда «IP classless» влияет только на работу процессов переадресации IOS, но не влияет на построение таблицы маршрутизации. Если функция «IP classless» не настроена (с помощью команды no ip classless), маршрутизатор не будет переадресовать пакеты в подсети. Для примера снова поместим три маршрута в таблицу маршрутизации и проведем пакеты через маршрутизатор.

Примечание: Если суперсеть или маршрут по умолчанию получены через IS-IS или OSPF, то команда no ip classless configuration игнорируется. В этом случае режим коммутация пакетов работает так, как если бы команда ip classless была настроена.

Помня о том, что сеть 172.30.32.0/24 включает адреса с 172.30.32.0 по 172.30.32.255, а сеть 172.30.32.0/20 включает адреса с 172.30.32.0 по 172.30.47.255, мы можем выполнить коммутацию трех пакетов с использованием этой таблицы маршрутизации и проанализировать результаты.

  • Пакет, направленный по адресу 172.30.33.1, переадресуются на 10.1.1.2, так как этот маршрут имеет наибольший префикс.

  • Пакет, предназначенный для адреса 172.30.33.1, пересылается на 10.1.1.2, из-за совпадения самого длинного префикса.

  • Пакет, направленный по адресу 192.168.10.1 переадресуются на 10.1.1.3. Так как сеть отсутствует в таблице маршрутизации, пакет переадресуется на маршрут по умолчанию.

  • Пакет, отправленный по адресу 172.30.254.1, отбрасывается.

Удивительно, что из этих четырех пакетов был отброшен последний. Он отброшен потому, что его место назначения 172.30.254.1 находится внутри известной крупной сети 172.30.0.0/16, но маршрутизатор не знает об этой отдельной подсети внутри этой крупной сети.

На этом основана маршрутизация типа classful: Если одна часть основной сети известна, но подсеть в этой основной сети, для которой предназначен пакет, не известна, пакет отбрасывается.

Самым сложным для понимания аспектом этого правила является то, что маршрутизатор использует только маршрут по умолчанию, если крупная сеть назначения вообще не существует в таблице маршрутизации.

Это может вызвать проблемы в сети, когда удаленный участок с одной связью к остальной части сети не выполняет никаких протоколов маршрутизации, как проиллюстрировано.

Маршрутизатор удаленного сайта настраивается следующим образом:

В такой конфигурации узлы на удаленном узле могут достичь назначения через Интернет (через облако 10.x.x.x), но не назначений в облаке 10.x.x.x, которое является корпоративной сетью. Поскольку удаленный маршрутизатор обладает информацией о части сети 10.0.0.0/8, двух напрямую подключенных подсетях и ничего не знает о другой подсети диапазона 10.x.x.x, то он предполагает, что таких подсетей не существует, и сбрасывает предназначенные для них пакеты. Однако трафик, направленный в Интернет, не имеет получателя в диапазоне адресов 10.x.x.x и поэтому правильно направляется по стандартному маршруту.

Настройка бесклассового IP на удаленном маршрутизаторе позволяет решить эту проблему, так как она позволяет удаленному маршрутизатору игнорировать границы класса сетей в таблице маршрутизации и выполнять маршрутизацию просто по совпадению с наибольшей длиной префикса.

Проверка таблиц маршрутизации

Вас, наверное, заинтересовало, почему я попросил ввести команду TCP/IP, если статья касается таблиц маршрутизации? Да потому что, никто не смотрит таблицы, если не возникла проблема с компьютером. А если проблема есть, то лучше всего начать процесс диагностики со сравнения информации, предоставленной командой IPCONFIG, с информацией в таблицах маршрутизации.

Как видно из рисунка В, команда IPCONFIG /ALL показывает основную информацию по протоколу TCP/IP: IP адрес, шлюз по умолчанию и т. д. А вот таблицы маршрутизации прочитать не так легко. Именно поэтому я хотел бы обсудить вопрос считывания данных из таблиц.

Для понимания информации, содержащейся в таблицах, необходимо понять принцип работы маршрутизатора. Работа маршрутизатора состоит в том, чтобы направлять трафик из одной сети в другую. Поэтому маршрутизатор может состоять из нескольких сетевых адаптеров, каждый из которых подключен к различным сетевым сегментам.

Когда пользователь отправляет пакет в другой сетевой сегмент, чем тот, к которому подключен компьютер, то пакет направляется в маршрутизатор. Тогда маршрутизатор определяет сегмент, в который необходимо направить данный пакет. Не имеет значения, подключен ли маршрутизатор к двум сетевым сегментам или десятку. Процесс принятия маршрутизатором решения одинаков, и основывается он на таблицах маршрутизации.

Взглянув на экран, появившийся после введения команды Route Print, можно увидеть, что таблицы разделены на 5 колонок. Первой идет колонка сетей. В ней представлены все сетевые сегменты, к которым подключен маршрутизатор. Колонка Netmask показывает маску подсети, но не сетевого интерфейса, к которому подключен сегмент, а самого сегмента. Это позволяет маршрутизатору определить класс адреса для сети места назначения.

Третьей является колонка шлюза. После того как маршрутизатор определил сеть назначения, в которую необходимо отправить пакет, он сверяется со списком шлюза. Данный список «говорит» маршрутизатору, через какой IP адрес необходимо отправлять пакет в сеть назначения.

Колонка интерфейса предоставляет информацию о сетевом адаптере, подключенном к сети назначения. Точнее будет сказать, что данная колонка предоставляет информацию о IP адресе сетевого адаптера, который соединяет маршрутизатор с сетью назначения. Но маршрутизатор достаточно «умен», чтобы понять, чему присвоен адрес.

Последней идет метрическая колонка. Метрики – это довольно сложная тема, тем не менее, я попытаюсь объяснить, что они из себя представляют. Лучше всего это можно сделать на примере аэропорта. Представьте, что необходимо перелететь из Шарлоты, штат Северная Каролина, в Майами, штат Флорида. Аэропорт в Шарлоте очень большой, и существует несколько способов попасть на пляж в Майами. Можно воспользоваться рейсом компании Северо-западные авиалинии. Он доставит меня в Детройт, штат Мичиган, а затем в Майами (Детройт находится несколько в стороне). Можно воспользоваться рейсом Континентальный авиалиний через Хьюстон, штат Техас, а затем в Майами. А можно просто воспользоваться Американскими авиалиниями и попасть в Майами без промежуточных приземлений. Так каким же рейсом воспользоваться?

В действительности на выбор могут повлиять несколько факторов: цена билета, время вылета и т. д. Но предположим, что все одинаково. Если нет разницы кроме маршрута, то, конечно же, лучше воспользоваться рейсом без промежуточных приземлений. Этот маршрут самый быстрый, кроме того, он позволит избежать проблем со связью, потерянным багажом и т. д.

Маршрутизация работает по такому же принципу. Существует несколько маршрутов отправки пакетов. В этом случае имеет смысл отправить его по самому короткому пути. Вот когда вступают в игру метрики. Windows не задействует метрики, пока есть только один маршрут достижения места назначения. В противном случае Windows проверяет метрики для определения кратчайшего пути. Это упрощенное объяснение, но оно позволяет понять принцип работы.

Ping

Первая утилита, как ни странно, — это команда ping. Она позволяет определить наличие компьютера в сети, для чего посылает удаленному компьютеру эхо-ICMP-запросы. Если компьютер не блокирует входящие ICMP-пакеты (это позволяет сделать, например, встроенный брандмауэр Windows Firewall), то утилита подсчитывает время отклика от компьютера, а в случае отправки нескольких пакетов выдает суммарную статистику. Большинство внутренних роутеров, конечно же, не блокируют ICMP-запросы, поэтому с помощью этой команды можно определить, какой из узлов сети доступен. Рассмотрим эту утилиту подробнее.

Для вызова справки по возможным ключам запуска команды ping необходимо добавить ключ /?. Вызов утилиты ping лучше всего осуществлять из командной строки (cmd), которую, в свою очередь, можно вызвать через Пуск -> Выполнить ->
cmd
(в операционной системе Windows Vista функция Выполнить
размещена в строке поиска, в самом низу меню Пуск
).

По умолчанию команда ping отсылает четыре пакета к удаленному узлу и на основе данных, полученных в результате отправки, выдает статистическую информацию. Статистика наглядно показывает, сколько пакетов было потеряно и среднее время отправки (время отклика) в процентном соотношении, а также максимальные и минимальные величины. В тех случаях, когда происходят значительные потери пакетов в локальной сети, лучше всего использовать команду ping с ключом –t. При выполнении утилиты с этим ключом пакеты будут отсылаться постоянно, пока пользователь не прекратит ее работу. Остановить работу утилиты можно, одновременно нажав распространенную комбинацию клавиш Ctrl + C. Для вывода текущей статистики без прекращения работы утилиты используется сочетание клавиш Ctrl + Break. В таком случае пакеты будут продолжать отсылаться, а пользователь получит сводную статистику по уже отправленным пакетам.

Утилита ping также дает возможность задать количество пакетов, отправляемых удаленному узлу. Для этого необходимо выполнить команду ping с ключом –n x, где x — количество отправляемых пакетов. В свою очередь, при наличии такой возможности ключ –a позволяет определить доменное имя удаленного компьютера, если известен лишь его IP-адрес.

В некоторых случаях к узлу доходят пакеты маленького объема, а пакет большого объема теряется. По умолчанию утилита ping отсылает пакеты с размером буфера 32 байт. Этот объем можно изменять в пределах от 0 до 65 500. Для этого служит ключ –l x, где x — количество отправляемых узлу байт.

Также утилита ping позволяет задать параметр поля TTL (time-to-live) каждого пакета. Для этого служит ключ –i x, где x — время жизни пакета в диапазоне от 0 до 255. Команда ping дает возможность задать время ожидания отправленного пакета. Для этого необходимо запускать утилиту с параметром –w x, где x — время ожидания, которое задается в миллисекундах и может иметь практически неограниченную величину.

Теперь перейдем к самому главному. Утилита ping выдает не только статистику по количеству отправленных/полученных пакетов, но и приблизительный маршрут каждого из пакетов. Для этого при запуске утилиты нужно задать ключ –r x, где x — количество прыжков для пакета. Это значение для данной команды лежит в пределах от 0 до 10. После выполнения этой команды статистика будет содержать информацию по прыжкам для каждого отправленного пакета. Утилита также может показать штамп времени для каждого прыжка. Для активации этой функции необходимо запускать утилиту с параметром –s x, где x может принимать значения от 1 до 4.

Большинство функций отображения маршрута в утилите ping зависят от полученного ответа: если ответ от запрашиваемого компьютера не получен, пользователь не увидит никакой информации.

Отметим, что здесь не рассматриваются команды, которые относятся к протоколу IPv6, поскольку он до сих пор не нашел широкого применения, хотя его поддержка по умолчанию включена во все новейшие операционные системы.

Блог

ГлавнаяОктябрь

12:27

Список интерфейсов — список сетевых адаптеров, установленных в компьютере. Интерфейс MS TCP Loopback interface присутствует всегда и предназначен для обращения узла к самому себе. Интерфейс Realtek RTL8139 Family PCI Fast Ethernet NIC — сетевая карта.

Далее идет сама таблица маршрутов. Каждая строка таблицы — это маршрут для какой-либо IP-сети. Ее столбцы:

Сетевой адрес — диапазон IP-адресов, которые достижимы с помощью данного маршрута.

Маска сети — маска подсети, в которую отправляется пакет с помощью данного маршрута.

Адрес шлюза — IP-адрес узла, на который пересылаются пакеты, соответствующие данному маршруту.

Интерфейс — обозначение сетевого интерфейса данного компьютера, на который пересылаются пакеты, соответствующие маршруту.

Метрика — условная стоимость маршрута. Если для одной и той же сети есть несколько маршрутов, то выбирается маршрут с минимальной стоимостью. Как правило, метрика — это количество маршрутизаторов, которые должен пройти пакет, чтобы попасть в нужную сеть.

Проанализируем некоторые строки таблицы.

Первая строка таблицы соответствует значению основного шлюза в конфигурации TCP/IP данной станции. Сеть с адресом «0.0.0.0» обозначает «все остальные сети, не соответствующие другим строкам данной таблицы маршрутизации».

Вторая строка — маршрут для отправки пакетов от узла самому себе.

Третья строка (сеть 192.168.1.0 с маской 255.255.255.0 ) — маршрут для отправки пакетов в локальной IP-сети (т.е. той сети, в которой расположена данная рабочая станция).

Последняя строка — широковещательный адрес для всех узлов локальной IP-сети.

Последняя строка на рис. 4.6 — список постоянных маршрутов рабочей станции. Это статические маршруты, которые созданы командой route add. В данном примере нет ни одного такого статического маршрута.

Сервер.

Теперь рассмотрим сервер с системой Windows 2003 Server, с тремя сетевыми адаптерами:

Адаптер 1 — расположен во внутренней сети компании (IP-адрес — 192.168.1.10, маска подсети — 255.255.255.0 );
Адаптер 2 — расположен во внешней сети Интернет-провайдера ISP-1 (IP-адрес — 213.10.11.2, маска подсети — 255.255.255.248, ближайший интерфейс в сети провайдера — 213.10.11.1 );
Адаптер 3 — расположен во внешней сети Интернет-провайдера ISP-2 (IP-адрес — 217.1.1.34, маска подсети — 255.255.255.248, ближайший интерфейс в сети провайдера — 217.1.1.33 ).
IP-сети провайдеров — условные, IP-адреса выбраны лишь для иллюстрации (хотя вполне возможно случайное совпадение с какой-либо существующей сетью).

Кроме того, на сервере установлена Служба маршрутизации и удаленного доступа для управления маршрутизацией пакетов между IP-сетями и доступа в сеть компании через модемный пул.

В данном случае команда route print выдаст таблицу маршрутизации, изображенную на рис. 4.7.

Свободная публикация материалов сайта при условии наличия ссылки на сайт. Здесь общение с автором проекта по вопросам рекламы,  развития и поддержки проекта, обмена информацией, авторских прав — в контакты. Почта администратора сайта — evgeniy@fedoroff.net. Статья 29.4 Каждый имеет право свободно искать, получать, передавать, производить и распространять информацию любым законным способом. Перечень сведений, составляющих государственную тайну, определяется федеральным законом.  fedoroff.net  

Examples

To display the entire contents of the IP routing table, type:

To display the routes in the IP routing table that begin with 10, type:

To add a default route with the default gateway address of 192.168.12.1, type:

To add a route to the destination 10.41.0.0 with the subnet mask of 255.255.0.0 and the next hop address of 10.27.0.1, type:

To add a persistent route to the destination 10.41.0.0 with the subnet mask of 255.255.0.0 and the next hop address of 10.27.0.1, type:

To add a route to the destination 10.41.0.0 with the subnet mask of 255.255.0.0, the next hop address of 10.27.0.1, and the cost metric of 7, type:

To add a route to the destination 10.41.0.0 with the subnet mask of 255.255.0.0, the next hop address of 10.27.0.1, and using the interface index 0x3, type:

To delete the route to the destination 10.41.0.0 with the subnet mask of 255.255.0.0, type:

To delete all routes in the IP routing table that begin with 10, type:

To change the next hop address of the route with the destination of 10.41.0.0 and the subnet mask of 255.255.0.0 from 10.27.0.1 to 10.27.0.25, type:

Синтаксис и основные опции

Основное назначение команды route – добавление и удаление сетевых маршрутов для системного ядра, а также просмотр содержимого таблицы маршрутизации. Эта команда, хотя и работает в разных UNIX-подобных системах одинаково, однако имеет резко отличающийся синтаксис в зависимости от используемой системы.

В общем случае прототипом команды route является следующая запись:

route add  <IP/Net> netmask gw <Gateway IP> dev <Int>X

Например:

$ route add -net 127.0.0.0 netmask 255.0.0.0 metric 1024 dev lo

Эта команда добавит шлюз с обратной связью через виртуальное устройство lo, которое используется для этой цели в Linux-системах. Опции -net и -host используются для указания адреса, характеризующего либо сеть, либо узел соответственно как пункты назначения. Для определения подсети служит опция  netmask, для задания приоритета шлюза — опция metric. Сетевой интерфейс обозначается опцией dev. Кроме описанных выше для команды route также существуют и другие используемые ей опции, которые приведены в следующей таблице:

Опция

Назначение

del

Удаление маршрута

gw

Шлюз, через который должны достигаться сеть или узел. Задаётся в виде имени узла или точечной записи адреса.

mss

Устанавливает значение MTU (максимальную величину пакета) в байтах.

window

Устанавливает размер TCP-окна для задаваемого шлюза в байтах. Обычно используется в сетях AX.25.

irtt

Устанавливает начальное время отклика для TCP-соединений по данному маршруту в миллисекундах.

reject

Задаёт блокирующий маршрут, который должен приводить к остановке процедуры поиска маршрутов. Полезно при скрытии сетей для использования в них шлюз по-умолчанию.

-F

Заставляет работать с таблицей маршрутизации ядра. Эта опция в большинстве систем используется по-умолчанию, поэтому часто опускается.

-C

Заставляет работать с кэшем маршрутизации ядра.

-v

Включает подробный режим работы команды route.

-n

Использование числового формата адресов вместо попыток определения символьных наименований узлов. Можно использовать в случае определения проблем с соединениями к DNS.

-e

Использовать формат вывода команды netstat для отображения содержимого таблицы маршрутов. Опция -ee сгенерирует самый подробный отчёт с полными наименованиями параметров таблицы маршрутов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector